
ORIGINAL ARTICLE

Measuring progress in Premo order-verification

Ryan B. Bond Æ Curtis C. Ober Æ Patrick M. Knupp

Received: 15 November 2006 / Accepted: 20 January 2007

� Springer-Verlag London Limited 2007

Abstract Since verification of computational simulation

codes requires significant resources, the ability to measure

progress in verification is critical to assess whether

resources are being applied appropriately. Additionally,

potential users need to know what fraction of the software

has been order-verified. In this study, the procedures and

progress measures presented by Knupp et al. (Measuring

progress order-verification within software development

projects. Engineering with Computers, appears in this is-

sue, 2007) are demonstrated on the Premo software, which

simulates compressible aerodynamics through and around

general geometries. Premo was selected for this demon-

stration because extensive order-verification tests have

been previously performed, yet no systematic effort has

been made to assess test-suite completeness or progress.

This effort was performed to identify the practical issues

encountered when attempting to apply the ideas by Knupp

(Measuring progress order-verification within software

development projects. Engineering with Computers, ap-

pears in this issue, 2007) to existing production-quality

software. In this work, a non-specific order-verification

exercise is considered, as opposed to an application-spe-

cific order-verification exercise, since past and present

Premo order-verification efforts have been motivated by

the need to verify all of the code, rather than portions

relevant for specific applications. Constructing an order-

verification test suite that verifies the order of accuracy of

all the code capabilities is a major step in measuring pro-

gress. A practical approach to test-suite construction is

described that helps create a complete test suite through a

combination of coarse-grain code coverage, input-keyword

inspection, discretization-algorithm documentation, and

expert knowledge. Some of the difficulties and issues

encountered during the construction of the test suite are

described, along with recommendations on how to deal

with them. Once the test suite is constructed, the progress

measures proposed by Knupp (Measuring progress order-

verification within software development projects. Engi-

neering with Computers, appears in this issue, 2007) can be

evaluated and used to reconstruct the history of progress in

Premo verification over the past several years. Gaps in

Premo verification are identified and indicate future

directions for making progress. Additionally, a measure of

Premo verification fitness is computed for selected appli-

cations commonly simulated in the aerospace industry. It is

hoped that this demonstration will provide a practical

example for other software-development groups in mea-

suring their own verification progress.
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1 Introduction

Verifying the order of accuracy (OA) of computational

codes is an extremely resource intensive task. The devel-

opment and testing of progress measures are essential steps

in determining whether these resources are being applied

appropriately, and progress measures can bee used to

indicate to potential users what fraction of the software that

has been order-verified. The theoretical foundations for how

to construct a complete test suite for order verification, how

to measure progress in demonstrating the order behavior of

a code using this test suite, and how to relate this infor-

mation to specific applications of a code are presented in

[1]. It is the first known attempt at documenting a process

for completing order-verification tasks for a production-

quality code. The current work is intended to be a practical

application of some of the concepts presented in [1], al-

though not all of the concepts from [1] are included in this

exercise. The computational-fluid-dynamics code Premo

[2] and its past and present order-verification attempts are

used to document a practical example of the task of gen-

erating an order-verification test suite, measuring progress

in code order verification, and measuring the readiness of a

code (relative to its order-verification status) for a particular

application. The challenges encountered when applying the

ideas from [1] are documented. When general concepts

from [1] must be applied for the specific case of Premo, the

details have been included, and when certain assumptions

or simplifications must be made to reduce the scope of this

initial example exercise, those assumptions and simplifi-

cations have also been stated.

Premo is a compressible fluid dynamics code being

developed at Sandia National Laboratories. It is used to

determine aerodynamic performance of complex geome-

tries. It is a parallel, unstructured, edge-based, finite-vol-

ume code. Details about Premo are presented only when

necessary—a complete discussion of Premo can be found

in [2].

Numerous terms have been introduced in [1] and will

not be re-defined here since [1] appears in this same issue.

However the definitions of a couple of additional key terms

are given here to clarify distinctions between different

algorithms.

ordered algorithm: any algorithm with an associated

OA.

order-affecting algorithm: any calculation which, if

performed incorrectly, would adversely affect the observed

OA. All ordered algorithms are, by definition, order-

affecting algorithms. The set of ordered algorithms is a

subset of the set of order-affecting algorithms.

Examples of ordered and order-affecting algorithms are

as follows:

1. The numerical differentiation of some variable in a

finite-difference calculation is an ordered algorithm

(and thus also an order-affecting algorithm).

2. The calculation of viscosity, l, via some algebraic law

in a Navier-Stokes code is not an ordered algorithm,

but it is an order-affecting algorithm. Although the

formula for l may be algebraic, the result of its cal-

culation is embedded within a numerical differential

operation with an associated OA. Therefore, the ob-

served OA of the numerical differentiation would be

affected by an incorrect l calculation.

The Premo [2] software was chosen for this work be-

cause of the maturity of its verification efforts in both

temporal and spatial discretizations. Order verification

(OV) for the temporal-discretization terms in Premo has

included verification by the method of exact solutions

using a convecting-vortex problem. Recent OV efforts for

spatial-discretization terms (both interior equation sets and

boundary conditions (BCs)) have been performed using the

method of manufactured solutions (MMS) [3–5]. Earlier

work is described in [6, 7]. To date, several coding mis-

takes and algorithmic weaknesses have been found and

corrected through code OV.

In this work, the focus is restricted to the initial attempt

at verifying the order of accuracy of code features, rather

than ongoing, regression-style testing meant to preserve

order behavior during continuous code development. This

is a closed-ended process, presumably taking place once

for each version release. Testing of individual functions

(i.e., unit testing) upon initial implementation of features is

not addressed in this paper because it is not part of OV as

presented in [1]. These issues are extremely important, but

fall outside of the scope of the present study. A key purpose

of this study is to create a database of order-of-accuracy

tests (OATs) and results such that different measures (those

conceived in [1] as well as others) can be evaluated over

time. Such a database allows progress-measure definitions

to evolve so that they are representative both of effort level

on OA verification and of the readiness of a code to be used

for a particular application. This study is an example of

how to implement progress-measure theory; different codes

may need to follow slightly different procedures, even

though the concepts should generally apply to a wide

spectrum of OA codes.

The set of all code lines (a portion of software) that

affect the OA is referred to as the ‘‘OV domain’’, and is

given the symbol W. It can be decomposed into a devel-

oper-oriented partition, such as functions or lines, or a user-

oriented decomposition, such as code options or features.

(Here we can not use the term ‘‘partition’’ for the case of

options, since different code options may have overlapping
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lines of code.) A particular domain, P � X; is the subset of

code lines that affect the OA relative to a particular order-

verification exercise (OVE), OAT, application, etc. Two

key concepts presented in [1] are the ‘‘progress measure’’

and ‘‘fitness measure’’. A progress measure is a metric

which communicates the progress in an OVE over time.

For the purpose of this study, only a non-specific OVE is

considered, where the OVTS is complete relative to W,

rather than the case of an application-specific OVE, where

the OVTS is designed to cover a subset of the OV domain

associated with a specific application, Papp.�W. If the OV

status of a code relative to a specific application is needed,

but no application-specific OVE has been performed, then

a fitness measure indicates the OV status relative to the

application using data from a non-specific OVE. Numerous

progress and fitness measures are proposed in [1], and

some of them are calculated for Premo in this work. Sec-

tion 3 gives the definitions and abbreviated discussions of

these measures.

A principal challenge of measuring OV progress is the

design of the OVTS. If the exact mappings between the

governing equations and the corresponding portions of the

software (functions, lines of code, etc.) are documented,

then construction of the OVTS is significantly simplified.

However, such documentation is often non-existent or

incomplete. A complete OVTS is one that tests, in some

meaningful sense, the full range of an OA code’s capa-

bilities. The completeness of an OVTS can be relative to a

given version of a code and, if necessary, relative to a set

or subset of features of that version of the code. Thus,

each OVE has an OVTS which is complete relative to a

particular domain, POVE � X: For example, an OVTS can

be designed to thoroughly test all documented or mature

features ðPdoc:&mat:Þ in a given version but to not test

some experimental or undocumented features which are

still being developed in anticipation of future releases.

This is what was done in the present work; thus,

POVE ¼ Pdoc:&mat: � X: Once the particular domain for

the OVE, POVE, has been established, the OVTS must be

evaluated for completeness so that gaps in OVTS cover-

age can be identified and addressed. Additionally, a

quantitative indicator of OVTS completeness can be

evaluated over time, so that the process of OVTS design

and construction can be monitored (although we do not

attempt to do so in the present work). We propose several

different techniques for evaluating OVTS completeness in

Sect. 2.2.

2 Construction of the OVTS

As described in [1], the process of constructing an OVTS to

cover POVE is iterative:

1. Start with an initial OAT, /1, that covers some fraction

of the particular domain for the OVE, POVE;

2. For n ‡ 1, evaluate the OVTS, {/1,...,/n}, to deter-

mine what fraction of POVE is not covered;

3. Introduce a new OAT, /n+1, which covers some por-

tion of POVE missed by {/1,...,/n};

4. Continue until no candidate OATs can be conceived

which cover anything new.

This process does not result in a unique OVTS. The

final OVTS is dependent upon the initial OAT, the way(s)

in which coverage completeness is evaluated, the sequence

in which new OATs are introduced, and the desired gran-

ularity. Since measures for verification progress are based

upon the results of each OAT in the OVTS, any given

progress measure will carry some dependence upon the

OVTS and thus inherit its non-uniqueness. This is per-

missible since the intent of progress measures is to quantify

progress in verification over time, so any progress measure

will increase over time as long as the code and the OVTS

remain static. The dynamic case, where the code is still in

development and the OVTS is evolving with it, while

important for practical application, is beyond the scope of

the present discussion.1 The following sections give in-

depth explanations of the steps in OVTS construction.

2.1 Initial OVTS

The initial OVTS can be a single OAT created from scratch

or collection of OATs from prior OV efforts. In the case of

this study, the initial OVTS consisted of seven inviscid

convecting-vortex tests (an unsteady exact solution prob-

lem), each using different options for the temporal inte-

gration, and nine steady MMS tests from [3–5] for spatial

order verification of the interior equation sets and BCs.

Some OATs from prior OV efforts (namely, some of [3–5]

and all of [6, 7]) were omitted from the initial OVTS. This

was done because they were redundant, relative to OATs

that were part of the initial OVTS. An example of such

redundancy are the 2D tests in [6, 7] which were super-

seded by 3D tests in [3–5]. The omission of these tests

coarsened the granularity of the OVTS. A coarse-grained

OVTS takes less time to run since it has fewer tests.

However, a fine-grained OVTS more accurately shows

incremental progress and is superior for isolating problems

in the code. For example, the passing of the MMS tests

from [6, 7] does not show up as an increase in our progress

measure since our OVTS omits them. In practice, an OVTS

will have a granularity somewhere between two extremes:

1 This case is discussed in [1], but a thorough example study would

require a series of code releases and associated OVTS versions,

requiring several years and implementation of a more formal OV

process for Premo.
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the finest OVTS, in which each OAT tests only one unique

code capability, and the coarsest OVTS which represents

the minimum number of OATs meeting the coverage

completeness requirement. An OVTS used for initial OV is

likely to be more fine-grained. This allows for easy isola-

tion of problems to certain code features or algorithms. An

OVTS used for regression-style testing, after initial OV has

been completed, is likely to be more coarse-grained, so that

fewer tests need to be maintained and run.

2.2 Evaluating completeness of the OVTS

An OVTS is complete relative to POVE if it tests all of the

lines in POVE with all the required generality. The OV

domain can be broken down into many different decom-

positions. An end-user-oriented decomposition is one that

defines the OV domain in terms of code options or features.

A complete OVTS tests every possible option or feature

contained in the particular domain associated with its OVE.

A developer-oriented decomposition is one that defines the

OV domain in terms of portions of the software: lines,

blocks of lines, functions, groups of functions, etc. Devel-

oper-oriented decompositions usually group lines of soft-

ware into subsets; such decompositions are usually

partitions. End-user-oriented decompositions are frequently

not partitions, since the subsets of code lines associated with

different inputs or features are not necessarily disjoint. A

complete OVTS tests each piece of the software contained

in the particular domain associated with its OVE in its most

general fashion. As mentioned previously, the OV domain

of interest can be restricted to features (or portions of

software) that are considered to be mature, documented, and

advertised for general use. In this study, we limited the

investigation to the mature and documented capabilities of

version 1.3b of Premo, so that POVE ¼ Pdoc:&mat:;1:3b � X:
Additionally, since Premo relies on several supporting

pieces of software (the Sierra2 framework [8] as well as

third-party libraries (TPLs)), POVE was taken to be that

defined only by Premo itself, not all of the supporting

software. Any end-to-end test of Premo obviously tests the

supporting software for a specific case, but no effort was

made to have the OVTS completely cover the OV domains

mapped out by the Sierra framework or TPLs. This omis-

sion was done simply to reduce the scope of the present

study. Obviously, to verify all of Premo, the OVTS must

cover the features of Sierra and the TPLs that Premo uses, in

the most general way that Premo can use them.

To evaluate the completeness of the OVTS, coverage

indicators are needed. A coverage indicator is a function

valued in the range [0,1] and can be associated with some

decomposition of the OV domain. A value of 1 indicates

that the set has been completely covered. Any given

decomposition of the OV domain will have at least one

associated coverage indicator. An example coverage indi-

cator is line coverage, where the number of lines covered

by the OVTS can be measured with some software

development tools. Line coverage is not a particularly

effective coverage indicator because it is impractical to sort

out which lines belong to the OV domain and which do

not.3 Three primary coverage indicators are used for this

study: expert knowledge, coarse-grained code coverage (at

the function level), and input-keyword evaluation.

We first attempted using expert knowledge to document

all the equations and capabilities in order to identify what

should be in the OVTS. This became impractical after a

while due to the huge number of capabilities and combi-

nations. A key finding was that it was difficult to construct

the complete test suite in this fashion because the code-

documentation requirements are significant and most code

documentation would be insufficient for this purpose. We

recommend in the future that new codes provide docu-

mentation detailed enough to identify all code capabilities

and options and their mappings to portions of the software,

input options, and the governing equations. This is no small

task and should be included as part of the development

process.

Using expert knowledge to evaluate OVTS complete-

ness is good for initial OVTS design, when broad catego-

ries of OATs are conceived and implemented, and can be

based on the documentation of the code with respect to

order-affecting algorithms. Once the OVTS has matured to

a certain level, coarse-grained code coverage and input-

keyword evaluation, both automated processes, can be used

to detect additional holes in the code coverage. Expert

knowledge misses many holes because it is an inherently

subjective and labor-intensive process, which is prone to

mistakes. Additionally, expert knowledge provides only a

conceptual decomposition of the OV domain, and accord-

ingly, can not be used to produce a quantitative indicator of

OVTS completeness. However, expert knowledge is criti-

cal, since it must be used to ensure that all exercised code

options and portions of software are tested with the nec-

essary generality—something automated tools can not do

without being extremely sophisticated and complex.

One of the automated methods for evaluating coverage

of the OVTS is to trace the function coverage of code

execution for each test and then compile that coverage for

the full test suite (i.e., coarse-grained code coverage). One

2 The Sierra framework software and its input options are independent

of the governing equations, but they do handle such capabilities as

coupling, adaptivity, and shape functions.

3 For example, a line which prints a message to the user might be

outside of the OV domain, whereas a line which calculates a

numerical derivative would be inside the OV domain.
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major advantage of this method is that it actually traces

the code execution, allowing an audit of the perceived

mapping of order-affecting algorithms to portions of

software. Sometimes coding logic mistakes cause im-

proper paths through the software, so that properly

implemented lines are never executed. Such coding mis-

takes can actually be identified in the OVTS construction

phase with the coarse-grained code-coverage indicator,

even before the first OATs are executed on the full se-

quence of meshes. One disadvantage of any code-cover-

age-based indicator is that one can not know, without also

incorporating expert knowledge, whether executed por-

tions of the software have actually been tested with the

required generality. Any code-coverage-based indicator

must be implemented at a certain granularity. An advan-

tage of a coarse granularity is that it is simpler to map the

OV domain to larger portions of software (such as func-

tions) than it is to smaller portions (such as lines).4

However a weakness of using coarse-grained code cov-

erage is that finer branches may be missed. For example,

if the coverage is evaluated at the function level, there

may be branches internal to the function which may not

be covered by the OVTS, even though the function is

covered. An example in this study involves the no-slip

boundary condition, which has both isothermal (constant

temperature) and adiabatic (zero heat flux) options. The

isothermal/adiabatic branch is inside the function for no-

slip BC enforcement, so an OAT which tests either of

these options will register as having covered the function.

Thus, the function-coverage indicator can not identify the

hole in the OV domain left by an OVTS which tests only

one of the no-slip options.5

Another automated method for evaluating coverage of

the OVTS is input-keyword coverage. This method uses a

script to parse the code input file associated with an OAT,

looking for keywords associated with certain input

parameters. The options being exercised for a given OAT

are compared to the full list of code options to determine

the level of coverage, and then these statistics are com-

piled for the complete OVTS. One advantage of this

method is that it applies a user-oriented decomposition of

the OV domain, since users conceptualize the verification

process in terms of what options or features have been

verified. One key disadvantage of the keyword-coverage

indicator is that it does not distinguish between options

which are tested sufficiently generally and options that are

not. Another is that it does not actually trace the code

execution, so there is no way of knowing that the portions

of code associated with a given option are actually being

executed. Since the keyword coverage involves a script

used to parse the input files and compare the keywords to

the complete list, the level of sophistication in this script

determines its usefulness. A high degree of effort can be

put into making sure that the script fully identifies the

complete range of possible input keywords (which may

interact, be hierarchical, or have default values when

omitted) and map these possibilities to the OV domain.

Alternatively, the input file syntax can be designed so that

even a simple script can accomplish this task. In the case

of Premo, there is an additional complication because

some ‘‘input’’ is defined by the mesh or restart file, rather

than by the keywords in the input file. The input file only

contains the name of the mesh or restart file, so parsing it

with a script will not reveal anything about the mesh

topology.

Each of these coverage indicators has pros and cons, as

summarized in Table 1 along with the line-coverage

indicator. The important thing to note is that each indi-

cator has its own weaknesses, and that certain types of

holes will be missed by each of them. In essence, the

weaknesses can be placed into two broad categories:

coverage holes left unidentified because the underlying

decomposition does not actually span the OV domain and

coverage holes missed because the process of imple-

menting the coverage indicator is subject to mistakes.

Using multiple coverage indicators is viewed by the au-

thors as the best way of detecting OVTS coverage holes

with the fewest mistakes and least effort, and expert

knowledge, function coverage, and keyword coverage are

believed to provide the most useful information at a

reasonable cost. As noted in Table 1, line coverage has

similar pros and cons as function and keyword coverage

but requires line-by-line mapping to the OV domain,

which is labor intensive and therefore not included in this

study.

2.3 Filling coverage holes in the OVTS

As coverage holes are identified in the OVTS, new OATs

must be introduced to fill them and thus complete the

OVTS. In general, two types of solutions are used for

OATs: exact solutions and manufactured solutions. Since

they do not require calculation and implementation of a

source term, exact solutions are used where they exist

and where they are sufficiently general to test all terms in

the governing equations and BCs. Where no sufficiently

general exact solutions exist, or in cases where coarse

4 For this study, only the ‘‘apply’’ and ‘‘execute’’ functions for each

object were actually tracked for coverage because these functions

were considered to best map out the OV domain in the software. This

eliminated constructors, destructors, error handling functions, etc.

This distinction is somewhat subjective and is only relevant for

Premo’s specific software organization.
5 In this particular case, however, both expert-knowledge and input-

keyword coverage indicators can be used to make a distinction be-

tween the adiabatic and isothermal branches.
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granularity is desired and one manufactured solution can

take the place of multiple exact solutions, OATs involving

manufactured solutions are used to fill the OVTS. Although

progress in OVTS construction can be measured quantita-

tively as described in [1], no attempt was made to do this

for Premo.

The full OV domain, W, is the set of all lines of code in

all of the order-affecting algorithms.6 However, not all

order-affecting algorithms are ordered algorithms. A pre-

viously mentioned example is the calculation of molecular

viscosity, l, via an algebraic law in a Navier-Stokes code.

There is not an associated OA for the l calculation itself,

but since l is referenced in the term o
ox 2l ou

ox

� �
; which does

have an OA associated with its discretization, the l cal-

culation is an order-affecting algorithm and therefore must

be verified. All ordered algorithms must have their ob-

served OA measured via an OAT and compared with the

target OA. However, it may be possible, under certain

circumstances, to leave testing of some order-affecting

algorithms which are not ordered algorithms to the unit-test

suite, rather than including them in the OVTS. Continuing

with the example of l calculation, in the event that several

different options exist (Sutherland’s law, Keyes’ law, and

constant viscosity), it is not necessary to have separate

OATs for each of these cases. At least one OAT must exist

to test o
ox 2l ou

ox

� �
and one of the options for l, in the most

general way imaginable. Since Sutherland’s law and

Keyes’ law are both functions of temperature, either could

be used in order to satisfy this generality constraint, but

constant viscosity could not be used because that would

potentially overlook some coding mistakes. Take for in-

stance a coding mistake which passed the l function a

temperature from node i–1 instead of node i. In the case of

constant viscosity, this would not matter, and the mistake

would go unnoticed. However, if Sutherland’s law or

Keyes’ law were used, this would show up as an unordered

error if the relative locations of nodes i–1 and i were un-

correlated or a first-order error if they were adjacent or

otherwise correlated. Once an OVE for the Navier-Stokes

equations with a general viscosity definition is completed,

other viscosity options can be tested via unit tests, provided

the software is designed such that no coverage gaps exist in

the union of the OAT and the unit tests (e.g., minimal code

duplication prevents lines from being missed). These unit

tests are not considered to be part of the OVTS, since they

are not functional (i.e., end-to-end) tests. However, these

unit tests do cover some fraction of W and thus make a

smaller POVE permissible.

When OATs are used to fill the identified coverage gaps,

then the issue of OVTS granularity resurfaces. The need for

granularity may depend upon the identified gap: some

portions of the OV domain may warrant fine granular-

ity—others may not. In cases where fine granularity is

desired, slight modifications to an existing OAT would

create a new OAT having a high degree of overlap with the

OAT from which it was derived. On the other hand,

replacing an existing OAT with one that has a superset of

OV domain coverage would be more appropriate if coarse

granularity is desired.

An example OAT introduction which resulted in finer

granularity involved two new convecting-vortex tests.

The seven convecting-vortex tests in the initial OVTS

used seven different temporal-integration schemes, but

each used the same initial-condition (IC) enforcement

option. Two alternative IC enforcement options were

identified as being uncovered by the OVTS. In this

particular case, two new tests were created from an

existing one, so that each used the same temporal-inte-

gration scheme but a different IC enforcement option.

This rendered the initial test redundant, since it shared

the same IC enforcement option with six other tests and

the same integration scheme with two other tests. How-

ever, since the test was already in the OVTS, and the

granularity created by the overlap was desirable, this test

was left in the OVTS. The effect of this and other

Table 1 Summary of pros and cons for OVTS coverage indicators

Indicators Pros Cons

Expert

knowledge

Best for initial

design

Not automated

Evaluates

generality

Subjective

Function

coverage

Traces code

execution

Does not evaluate generality

Automated Misses finer-grained branches

Keyword

coverage

User-oriented

indicator

Does not evaluate generality

Automated Does not trace code execution

Line coverage Finds all untested

lines

Finds all untested lines

Traces code

execution

Does not evaluate generality

Automated Requires line-by-line mapping of

OV domain

6 Actually, it is the set of code lines defined by the order-affecting

algorithms in all of the combinations of interest. However, for this

study, we do not attempt to define which combinations are interesting

or even possible. An example is verification of the BCs. Each BC can

be adjacent to certain other BCs along junctions in the domain

boundary. BC/BC coupling issues may arise at these junctions, but at

present, we only consider whether a BC has been tested using a

sufficiently general solution and sufficiently general mesh topologies,

not whether all possible BC/BC interactions have been examined.

Examination of the intricacies of BC/BC coupling is being postponed

in Premo until the order behavior of present BCs is well understood

and acceptable under uncoupled conditions.
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granularity decisions on the progress and fitness measures

is discussed in Sects. 4.1 and 4.2.

2.4 Finalizing the OVTS

Steps 2 and 3 (evaluating coverage of the OVTS and

introducing new OATs to fill gaps) are repeated until the

OVTS is complete. Since W is finite, the OVTS associated

with POVE = W is also finite. However, under time and

budgetary constraints, some portions of the OV domain are

sometimes excluded from consideration, so the OVTS is

declared to be complete relative to POVE�W. As men-

tioned previously, this study did not attempt to completely

cover portions of the OV domain mapped out by Sierra

framework or TPL options. Nor did it attempt to fully

cover portions of the OV domain mapped out by Premo

capabilities that were experimental or deprecated. With

regard to the mature and documented capabilities that were

considered in OVTS construction, not all possible inter-

actions and combinations were considered. Performance of

iterative solvers was also not intended to be verified, so

sections of code corresponding to Jacobian evaluations,

nonlinear solvers, etc., were not considered as part of W;

although the OATs did exercise some of the solvers and a

variety of their options, their entire option sets are not

covered by the OVTS.

The final OVTS for this study consisted of 52 tests: nine

convecting-vortex tests for temporal-integration schemes

and IC enforcement options, eight unsteady exact-solution

tests for flux-limiter options, and 35 MMS tests for spatial

verification of all of the options associated with the inte-

rior-equation sets and BCs. Not all of these OATs are

complete, but each has all of the inputs defined (input file,

mesh file, etc.) necessary to define its coverage in the OV

domain. A ‘‘complete’’ OAT, according to [1], also has

everything needed to actually run and post-process the

tests. For example, the eight unsteady exact-solution tests

for limiter options are incomplete because the appropriate

exact solution has not been chosen or implemented; how-

ever, they do have all of the inputs defined to demonstrate

that they cover the full set of limiter options.

3 Measuring progress relative to the OVTS

3.1 Measuring progress relative to the particular OV

domain of the OVE, POVE

Once the OVTS has been constructed, it is used to dem-

onstrate the order behavior of the code. During this dem-

onstration phase, progress can be measured by one of

several measures suggested by [1]. The first of these is the

status measure, S, and it is given as

S ¼ 1

Npmax

XN

n¼1

p lnð Þ

where N is the number of OATs in the OVTS, pmax is the

maximum number of points assignable to a given OAT, ln
is the status level of the nth OAT, and p(l) is a function

which specifies how many points are assigned for each

status level in this study.

Table 2 shows the different status levels and the points

(out of a maximum of 20) awarded to the OATs at each

level. For more details, see [1]. In later sections, when the

function p(l) is described as being unequally weighted, the

point assignments in Table 2 are implied. Sometimes an

equally weighted p(l) is calculated, implying equal incre-

mental progress from each level to the next, and sometimes

a pass/fail p(l) is calculated, implying full credit at level 5

and no partial credit for the lower levels.

The status measure is an excellent way to measure the

effort level in the OVTS demonstration process and esti-

mate the time required for OVTS completion, since it gives

equal emphasis to each test. However, it is also useful to

ask the following question: ‘‘What fraction of the OV

domain is covered by the reproducible OATs, and what

fraction still remains?’’ In order to answer this question, a

decomposition for the OV domain must be chosen (input

keywords, functions, lines, etc.), and the union of all par-

ticular domains associated with reproducible OATs,SM
m¼1 Pm; where M is the number of OATs at level 5, must

be found. In this study, two such measures are calculated

versus time for Premo:

Table 2 OVTS Demonstration

process with OAT status levels
Level OAT status Required activity Failure mode Points

0 Incomplete Determine all input Incomplete input 0/20

1 Ready Obtain solutions Missing solutions 3/20

2 Realized Demonstrate asymptotic OA Non-asymptotic OA 5/20

3 Asymptotic Verify observed OA is target OA Unverified OA 10/20

4 Verified Document, set up regression test Non-reproducible 12/20

5 Reproducible Proceed to next OAT 20/20
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• PP,3, the ratio of the number of functions covered by

reproducible OATs to the number of functions covered

by the full OVTS.

• PP,4, the ratio of the number of input keywords covered

by reproducible OATs to the number of input keywords

covered by the full OVTS.

Since only reproducible OATs (i.e., those at level 5) are

counted, a pass/fail definition for p(l) is implied. For these

measures to be meaningful, the OVTS must be complete

relative to the full OV domain, W. These measures are

discussed in more detail in Sect. 4.1. There are other

measures given in [1] which will be evaluated for Premo in

future studies.

3.2 Measuring progress relative to the particular OV

domain of an application, Papp.

The previously mentioned measures (S, PP,3, and PP,4)

measure progress in OV relative to POVE. It is also useful

to know the level of verification progress relative to the

particular OV domain of an application, Papp.. The fitness

measure introduced in [1] is given as

F ¼ 1

pmax

XN

n¼1

wnp lnð Þ

where wn is a weight assigned to the nth OAT indicating its

relevance to the application. These weights can be deter-

mined manually or by some automated indicator of OAT

relevance and overlap. If a decomposition for Papp. is

chosen, then the weights can be determined by the extent of

overlap of each OAT’s particular domain, Pn, with Papp..

This is essentially a projection operation from POVE to

Papp. in the chosen decomposition. If functions are used for

the decomposition, the fitness measure FP,3 (similar to the

progress measure PP,3) is obtained, and if input keywords

are used, the fitness measure FP,4 (similar to the progress

measure PP,4) is obtained. Results for both of these mea-

sures are given in Sect. 4.2.

4 Results

4.1 Status-measure results

Figure 1 shows the progress of Premo verification over a

2.5 year period using status measures based on three dif-

ferent weightings: equally-weighted, unequally-weighted,

and pass/fail. The equally-weighted status measure shows

continuous verification progress over this time period. The

jump in the summer of 2005 corresponds to the introduc-

tion of the first seven of the nine convecting-vortex exact-

solution tests. These tests were conceived, implemented,

and passed in a very short period of time. This step func-

tion is superimposed on the nearly linear progress of the

MMS verification effort. The unequally-weighted status

measure shows the same trends, only it is consistently

lower because less weight is given to the lower OAT status

levels (where most of the current tests reside). The pass/fail

status measure does not show incremental progress over

time—rather, it shows sudden jumps as OATs pass. The

pass/fail weighting, however, provides the ultimate mea-

sure of success, because all OATs eventually need to pass.

The MMS tests, because they are more general than the

convecting-vortex tests, cover larger fractions of the OV

domain (or at least cover fractions more generally), but this

is not reflected in the status measures shown in Fig. 1,

since all OATs are weighted equally, without regard to how

much of POVE each OAT covers and whether this coverage

is unique. If the tests are weighted based on their unique

coverage attributes, then the progress measures obtained

show much more significant progress and more accurately

reflect the contributions of the MMS tests, which cover

larger portions of the OV domain than the convecting-

vortex tests.

Two coverage-weighted progress measures are shown in

Fig. 2. Unfortunately, two problems are evident with these

coverage-weighted measures: first, the weightings based on

keyword and function coverage result in significantly dif-

ferent measures, even though they are intended to measure

the same thing, and second, both are higher than the

developers’ perception of verification progress. The reason

for these discrepancies is that keyword-based and function-

based decompositions are, in practice, really incomplete

representations of the OV domain. There are tests which

may use option keywords or call functions but not test them

in the most general fashion. Since the automated tools for

determining keyword and function coverage do not account

Fig. 1 Status measures versus time
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for this, the progress measures increase proportional to all

of the unique keywords and functions of a test, rather than

only increasing for the keywords and functions corre-

sponding to features tested with all necessary generality. It

does appear for this case that the function-based progress

measure is less inflated than the keyword-based progress

measure, but that may not be true in general. The expla-

nation for the specific case of Premo is that there are many

input file lines which are used by almost any test (setting

the CFL number, number of time steps, etc.), so the first

passing OAT causes a large increment in keyword-based

progress measure.

4.2 Fitness-measure results

The fitness measure is a description of the code’s verifi-

cation status relative to a specific application. Since each

application has an associated particular domain, Papp., then

any progress-measure definition can be converted into a

fitness measure by projecting it from POVE to Papp.. A

more complete discussion of what is implied by the fitness

measure is contained in [1]. Figure 3 shows the fitness

measure for five different applications with the full OV

domain and the subset for each application decomposed by

input keywords. Figure 4 shows the fitness measure for

three of these applications with a function-based partition

for the full OV domain, W, and the subset for each appli-

cation, Papp.. As was the case in Fig. 2, both measures

seem a little inflated, with the keyword-based measure

being more inflated than the function-based measure.

However, in the case of fitness measures, coverage-

weighted measures are not guaranteed to be inflated, as

they are for the progress measures. Whereas the approxi-

mate decomposition of W tends to inflate the measure, the

approximate decomposition of Papp. tends to deflate the

measure. Just as an OAT may not test a feature with all

possible generality, an application may not use a feature

with all possible generality (and therefore, not require it to

be tested with all possible generality).

4.3 Discussion of granularity effects on progress

measures

As was mentioned in Sects. 2.1 and 2.3, the granularity of

the OVTS has a significant impact on the progress and

fitness measures. A few trends in the plots bear witness to

this effect. Figures 2, 3, and 4 show measures of zero up

until the first test in this OVTS passed in August 2005.

However, there were OATs created and passed prior to

August 2005 that are not included in this OVTS (namely,

the 2D results in [6, 7] and some inviscid results from [3–

5]). The passing of these OATs is not reflected in any of the

plots because these OATs are omitted from the OVTS. For

this case, the coarser OVTS shows lower measures than

Fig. 2 Coverage-based progress measures versus time
Fig. 3 Input-keyword-based fitness measure versus time

Fig. 4 Function-based fitness measure versus time
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would an OVTS containing every OAT which has been

passed.

Another granularity-induced anomaly is visible in

Fig. 4, where Premo appears to have a higher readiness

level for the Navier-Stokes (viscous) 2D Blunt Wedge

application than for the Euler (inviscid) 2D Blunt Wedge

application. This seems paradoxical, since all of the terms

in the interior equations for the inviscid application are

needed for the viscous application, but not vice versa. In

this case, one of the OATs in the OVTS is an MMS test of

the Navier-Stokes equations with all Dirichlet BCs. There

is not an MMS test of the Euler equations with all Dirichlet

BCs in this OVTS—instead, coverage of the Euler equa-

tions is gained through coverage of the Navier-Stokes

equations and through Euler OATs which test more com-

plicated BCs. However, the Euler tests with more com-

plicated BCs had not yet passed at the time the fitness of

Premo 1.3b was measured, and the Navier-Stokes OAT,

though testing the same equation terms, does not call all of

the same functions as would an Euler test. Thus, some

Euler functions show up as being needed by the Euler 2D

Blunt Wedge application but not covered by the passed

portion of the OVTS. This anomaly could be prevented in

future versions of the OVTS by including an Euler test with

all Dirichlet BCs, or by re-organizing the function calls so

that the Navier-Stokes test relies more heavily on the same

functions as an Euler test would.7

Granularity and other properties of the OVTS can

sometimes have a more profound impact on fitness mea-

sures than on progress measures. Some OATs within any

given OVTS will overlap the OV subdomain associated

with a given application. These can be referred to as the

‘‘relevant’’ OATs for the application. However, the OV

subdomain of the relevant OATs, Prel: � POVE; will most

likely be larger than the application-associated OV sub-

domain, Papp., because the boundaries of the OAT-asso-

ciated subdomains will not coincide with the application-

associated subdomains. In such a case, a coding mistake or

algorithmic weakness could lie in a portion of the OV

domain that is inside Prel. but outside Papp.. This coding

mistake or algorithmic weakness would lower the fitness

measure, even though it is not associated with a code

capability needed for the application.8

This concept is illustrated in Fig. 5, where, for both the

fine-grained and coarse-grained images, POVE is repre-

sented by the outer rectangle; Papp. is represented by the

inner circle, and coding mistakes or algorithmic weak-

nesses (which would reduce the observed OA) are repre-

sented by triangles. In the case of the fine-grained OVTS,

the relevant OATs are represented by five smaller rectan-

gles (the union of which is Prel., fine), and in the case of the

coarse-grained OVTS, the relevant OATs are represented

by three larger rectangles (the union of which is Prel.,

coarse). Two of the three relevant OATs for the coarse-

grained OVTS would fail, resulting in a lower fitness

measure than would be observed for the fine-grained

OVTS, where all five OATs would pass. Thus different test

suites result in different fitness measures for the same

version of the code, same two order-reducing issues, and

same application. Because of this potential, an OVTS

which is finer-grained is more likely to produce an accurate

fitness measure. This is, of course, only relevant in the

transient situation where unresolved order-reducing issues

are still present—the closer a code is to being fully verified,

the less it matters whether OATs and applications are

aligned in the OV domain.

In the preceding discussion, we consider various issues

assuming that the criteria for granularity decisions were

chosen with noble intentions. There remains, however, the

possibility that one could refine the OVTS (or even worse,

intentionally introduce redundancy) in portions of POVE

where a code’s order behavior is known to be satisfactory

and coarsen the OVTS in portions of POVE where the

code’s order behavior is known to be unsatisfactory. This

would falsely and deceptively inflate the measures. Al-

though the coverage-based measures would filter for this

somewhat, giving no credit for redundant OATs and less

credit for fine-grained OATs, the coverage-based measures

are typically already inflated because they can give credit

for lines in POVE which are not tested generally.

5 Conclusions

This practical illustration of [1] has shown that the theo-

retical ideas there translate well to measuring the order-

verification progress of an actual code. Implementation of

Fig. 5 Effect of granularity on fitness measure

7 Additionally, this problem has been resolved in version 1.4b since

many of the Euler-BC-associated OATs pass and also verify the

implementation of the Euler equations on the interior of the domain;

however, because this study focuses on the static code case, all of the

plots reflect the performance of version 1.3b and its associated OVTS.
8 This situation is recognizable only in hindsight, since a failing OAT

will not identify where in the OAT-associated subdomain the coding

mistake or algorithmic weakness lies.
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theory will vary from code to code depending on the spe-

cifics of the code in question. For Premo, the main issue

was how to implement a method for OVTS construction.

Many issues associated with OVTS construction and

measuring progress in code OV have been addressed. A

need has been identified for multiple OVTS coverage

indicators to aid in OVTS construction. Also, the function-

based and keyword-based indicators have been developed

to supplement expert knowledge. Although these are not

the only conceivable indicators of OVTS completeness, it

can be stated in general that using multiple coverage

indicators decreases the likelihood of missing a hole in

OVTS coverage. The simple act of generating an OVTS

and evaluating it for completeness may identify coding

mistakes before any OAT is actually run. An example

encountered in this work involved a logic error causing the

proper function not to be called. When the input keyword

associated with this feature was used, the feature showed

up as covered by the keyword-based indicator, but not by

the function-based indicator. The bug was corrected, and

when the proper code path was taken, the function-based

indicator reflected coverage of the feature. Once a com-

plete OVTS has been created, the OATs can be prioritized

based on their unique coverage attributes, as determined by

these indicators. A thorough discussion of OAT prioriti-

zation is given in [1]. Although Premo’s OV is not 100%

complete, the formal process of constructing a complete

OVTS identifies a clear path forward for completing its

OV.

The non-uniqueness of the OVTS has a significant im-

pact. In particular, the granularity of the OVTS can affect

progress measures and, to an even greater extent, fitness

measures. This granularity also affects the overall size and

runtime of the OVTS, with a coarser-grained test suite

generally being smaller and running faster than a finer-

grained test suite. On the other hand, a finer-grained test

suite has better diagnostic effectiveness, since the pass/fail

status of individual tests can more accurately be mapped

back to a list of features or portions of the software. In

order to fit the changing needs of a code development

project, the OVTS can be refactored periodically to in-

crease or decrease its granularity. Granularity can be in-

creased for portions of the OV domain that have evaded

verification for extended periods of time, while granularity

can be decreased for portions of the OV domain repre-

senting mature capabilities. Coarsening is especially

important as the OVTS evolves from a tool for initial OV

to a tool for regression-style OV. Also, the OVTS can also

be refactored so that the boundaries of its OAT-associated

OV subdomains are more aligned with application-associ-

ated OV subdomains. This would allow more accurate

calculation of fitness measures for the applications of

interest.

Even though the progress and fitness measures presented

in [1] are OVTS-dependent, this study demonstrates that

they are useful for measuring OV status and OV status

relative to specific applications or classes of applications

(i.e., fitness). The values presented are not intended to

create a false sense of precision; rather, they are to provide

data for discussion of relative OV progress between code

developers and stake holders. Additionally, this study has

created a database of OATs and associated OVEs which

can be used for yet-to-be-determined measures. Lessons

learned in OVTS construction will allow future OVTS

versions to be superior to the current one, and lessons

learned in OVTS completeness evaluation will lead to the

development of better coverage indicators. Once an OVE

or several OVEs have begun, calculating progress mea-

sures is relatively cheap, so using several different ones is

feasible and may be a preferred way to adequately indicate

how much progress in OV has been made and how much

work remains. Some lessons learned affect the code design/

development process. Generating an accurate mapping

between the software, user options, and governing equa-

tions can make OVTS construction and evaluation much

easier, and this mapping is easiest to generate as the soft-

ware is being developed, not afterward.

In some cases, modular design of the software may al-

low some portions of the full OV domain, W, to be covered

by unit tests, thus shrinking the particular domain

remaining to be verified by an OVE, POVE. A previously

mentioned example is that of the viscosity calculation, in

which case the most general option needs to be tested by

the OVTS, and other options may be tested via unit tests

and thus excluded from POVE.

6 Remaining issues

Several issues discussed in [1] have not yet been put into

practice for Premo. These issues include extending the

OVTS to include interactions of different features (e.g.,

BC/BC coupling), measuring progress in OV for a non-

static code, OAT prioritization, application-specific OVEs,

and OVTS design criteria more suitable for regression

testing. All of these issues are important, and the authors

plan to investigate them in the near future using Premo.

Additionally, even though the authors still do not plan to

use line coverage to evaluate completeness of the OVTS,

some of the coverage-based progress and fitness measures

in [1] rely on line coverage. The authors have hypothesized

that a line-coverage based progress measure, PP,5, would

not be as falsely inflated as the function-coverage and in-

put-keyword-coverage based progress measures, PP,3 and

PP,4. Future work will examine this hypothesis. Other

progress and fitness measures are presented in [1] which
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have not yet been calculated for Premo, so future

endeavors will examine those measures as well.
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